สถาบัน University Of The Fraser Valley (UFV)
โปรแกรม Engineering Transfer
(เมือง Abbotsford, รัฐ British Columbia)
About University Of The Fraser Valley (UFV)
สถาบันการศึกษา UFV แห่งนี้ตั้งอยู่ท่ามกลางความสวยงามของธรรมชาติของ Fraser Valley มีสาขาวิชามากมายเป็นที่ยอมรับและนักเรียนให้ความสนใจเข้ามาศึกษาเป็นอย่างมาก สถาบันรองรับนักเรียนถึง 15,000 คน ต่อ ปี UFV มีสาขากระจายอยู่ทั่วไปตามเมืองต่างต่างมากมาย อาทิ Abbotsford, Chilliwack, รมถึงในอนาคตทางสถาบันอาจมีการขยายสาขาวิชาไปยังต่างประเทศ เช่น Chandigarh, India ด้วยสภาพแวดล้อมที่สวยงามรวมถึงสถาบัน UFV เป็นที่ยอมรับของชาวแคนาเดี่ยนและในระดับสากลทำให้สถาบัน UFV ได้รับความนิยมในการเข้ามารับการศึกษาจากนักเรียนทั้งในประเทศและต่างประเทศ ได้อย่างมีประสิทธิภาพ
Why choose UFV?
- สถาบัน UFV รองรับการศึกษาด้านปริญญาตรีกว่า 15 สาขา รวมถึง 2 สาขาวิชา ในระดับปริญญาโท และ มากกว่า 100 สาขาวิชาในระดับ Certificate Diploma และ Post-degree มีการรองรับการโอนหน่วยกิตจากสถาบันเดิมผ่านมายัง UFV ด้วยระยะเวลาการเรียนเพียง 1 ถึง 2 ปี ในระดับอนุปริญญา
- สามารถโอนหน่วยกิจจาก ESL เพื่อเข้าศึกษาในสาขาวิชาชีพเป็นอีกทางเลือกหนึ่งที่มีความน่าสนใจเป็นอย่างมาก
- 98% ของนักเรียนที่สำเร็จการศึกษา ประสบความสำเร็จในการหางานหลังเรียนจบ
About Engineering Transfer Program
The Engineering Transfer program provides you with a supportive environment where you can achieve the highest grades possible before transferring to UBC with a minimum CGPA of 2.5, or UVic with a minimum CGPA of 2.33, to complete your degree in Engineering.
You spend the first year of an Engineering degree at UFV, covering topics such as linear algebra, structured programming, and mechanics. You then complete your degree at UBC or UVic, where you are guaranteed a seat upon transfer, or at another university. Once transferred, you join other second-year students in competition for entry into the engineering specialties, such as Mechanical, Electrical or Chemical.
While the program is based on the Abbotsford campus, the core science courses are also available in Chilliwack.
Career Expectations
A recent study by Statistics Canada that followed the lives of 15,166 Canadians over a 20-year period found that engineering was one of the most reliable fields to achieve high earnings throughout a lifetime.
While career outcomes may vary depending on the specialty you select, a recent report by Engineers Canada notes that there are not enough engineering graduates to fill positions vacated by senior engineers entering retirement.
Employment for engineers often develops in sectors of the economy that are experiencing growth. Specialties such as green engineering, software engineering, biomedical engineering, and nano-engineering are emerging as lucrative fields with excellent growth potential.
Courses:
ENGR 100 Production in Practice
Prerequisite(s): Enrolled in the Engineering Physics diploma in Mechatronics program.
This course gives students rudimentary hands-on experience in several industrial practices associated with welding, electrical systems, construction, and automotive work.
ENGR 113 Engineering Physics - Statics & Dynamics
Prerequisite(s): MATH 111 and PHYS 111.
This course emphasizes solution techniques and proper documentation for problems involving practical applications of Newton's laws to engineering situations.
ENGR 122 Introduction to Engineering
Pre- or corequisite(s): PHYS 111
This course exposes students to a wide range of engineering practices, with a view to helping them identify their specific interests. The course meets once a week for between one and four hours. Some weeks there will be an engineer on campus to give a presentation of their work. Other weeks the students will visit a site where engineering skills are being applied.
ENGR 151 Computer-Aided Engineering Graphics
Prerequisite(s): Familiarity with Windows-based systems
Pre- or corequisite(s): PHYS 111
This course covers technical sketching, orthographic projection, visualization in three dimensions and conventions of engineering drawing. Computer-based graphics (CADD) will be introduced. The principles of descriptive geometry will be applied to the solution of space problems. This course is designed for students intending to transfer to Engineering at UBC or UVIC and emphasizes engineering practices.
ENGR 152 Linear Algebra for Engineering
Pre- or corequisite(s): MATH 112
Intended for engineering students, this course covers basic problems and concepts in Euclidean space, such as matrix algebra, solutions to linear systems of equations, determinants, and eigenvalue problems. Emphasis throughout the course is placed on applications in science and engineering.
Note: This course is offered as MATH 152 and ENGR 152. Students may take only one of these for credit.
ENGR 210 Circuit Analysis
Prerequisite(s): PHYS 112.
Pre- or corequisite(s): PHYS 221.
Introduces mathematical models used to represent a variety of engineering problems (such as the solution of physical electric and electronic circuits). In particular, students will learn about network theorems, phasors, AC circuits, resonance, transformers, and three-phase circuits.
ENGR 255 Ordinary Differential Equations
Prerequisite(s): MATH 112 or at least a B in Math 118
Pre- or corequisite(s): MATH 211 and one of the following: MATH 152, MATH 221, or PHYS 221.
This course provides theory and techniques needed to solve ordinary differential equations, with an emphasis on applications. Topics include first- and second-order linear differential equations, nonlinear equations, series solutions, Laplace transform methods, and linear systems of differential equations.
Note: This course is offered as MATH 255 and ENGR 255. Students may take only one of these for credit.
ENGR 257 Mathematical Physics
Prerequisite(s): MATH 211 and (one of the following: PHYS 221 or MATH 255) and (one of the following: PHYS 112 or any other MATH course 200-level or above).
Partial and ordinary differential equations. Fourier series/transforms. Legendre polynomials. Laplace transforms. Applications to heat flow and waves. Laplace's equation in 1D, 2D, 3D using Cartesian, polar, and spherical co-ordinates. Special functions including Dirac Delta, Heaviside Theta, Si, Ci, Ei, Erf, Gamma.
Note: This course is offered as PHYS 381, MATH 381, and ENGR 257. Students may take only one of these for credit.
ENGR 330 Automatic Control Systems
Prerequisite(s): ENGR 210
This course is an introductory course on automatic control. The main goal of the course is to provide students with basic tools in modeling, analysis, and design for linear feedback control systems. Students will learn how to model mechanical, electrical, and electromechanical systems as differential equations and transfer functions. The analyses in this course include stability of open-loop and closed-loop systems as well as time responses and frequency responses of low order systems. The design methods are divided into root-locus techniques and frequency response techniques using Bode plots for designing proportional-integral-derivative (PID) and lead/lag controllers. Students will also learn how to apply automatic control theory to real engineering problems with Matlab and through laboratory exercises. This course will give the basic knowledge for more advanced control courses, such as state-space control techniques, nonlinear control, robust control, optimal control, adaptive control, digital control, sampled-data control, hybrid control, and system identification.
ENGR 340 Micro-Processors and Embedded Systems
Prerequisite(s): ENPH 320, ENPH 310, COMP 150, or COMP 152
This course covers basic microcomputer architecture; design and analysis of address decoders and memory systems; design and analysis of assembly language programs; and microcomputer system design.
ENGR 350 Sensors and Actuators
Prerequisite(s): ENGR 330
This course provides an introduction to sensors and actuators for electromechanical, computer-controlled machines, and devices. Topics include operating principles, design considerations, and applications of analog sensors, digital transducers, stepper motors, continuous-drive actuators, and drive system electronics. Component integration and design considerations are studied through examples selected from applications of machine tools, mechatronics, precision machines, robotics, aerospace systems, and ground and underwater vehicles. Laboratory exercises strengthen the understanding of component performance, system design, and integration.